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Abstract. In this paper a two-dimensional model of collapsed lattice animals with nearest-
neighbour contact interactions is introduced and the limiting free energy for the model is proved
to exist. We also establish that the partition function for collapsed lattice animals is related to
the reliability polynomial for then x m grid graph and to the generating function for spanning
forests on then x m grid graph. From these relationships and using results about directed
animals we are able to obtain rigorous upper and lower bounds on the free energy for collapsed
lattice animals. In addition we present Monte Carlo evidence that the heat capacity associated
with this model remains bounded in the thermodynamic limit. In fact we do not find any
evidence for a second-order phase transition for collapsed lattice animals.

1. Introduction

Understanding the statistical properties of lattice animals is important to the study of models
of branched polymers and random-cluster models. Recently, information about the statistics
of lattice animals has been used to make predictions about the collapse transition in branched
polymers. In particular, Flesiet al (1992, 1994) have studied a general lattice animal model

of branched polymer molecules in dilute solution which includes both monomer—monomer
and monomer-solvent interactions. Based on the analysis of exact enumeration data they
have predicted a curve of phase transitions corresponding to the ‘collapse’ of lattice animals
from expanded to compact objects. This collapse can be driven by either strengthening the
attraction between monomers or weakening the attraction between the monomer and solvent
molecules. By making a connection with bond percolation, they proved that the collapse
transition exists at least at one point along the predicted curve of phase transitions. In
addition their results indicate that there are peaks in the heat capacity along a curve within
the ‘collapsed’ regime suggesting the possibility of a collapse—collapse phase transition.
If such a phase transition exists, it would be characterized by a transition from compact
objects with few cycles to compact objects with many cycles. The goal of this paper is to
investigate further the statistical properties of lattice animals in the collapsed regime, we
introduce a model of collapsed lattice animals and study it for the square lattice by rigorous
analysis of the limiting free energy of the model and by Monte Carlo simulation. The model
developed here corresponds to the cAse= —oo (a nearest-neighbour infinite repulsion
between monomer and solvent molecules) in the Flesial two-variable model and to

0 = 0 in the random-cluster model for the hypercubic latt&®e In particular, there is a
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direct relationship between the partition function of the model and a reliability polynomial
for the underlying lattice. We also show that the limiting free energy of our model is equal
to the exponential growth rate of the generating function for spanning forests on certain
subsets of the square lattice. We begin by defining the model and proving the existence of
its limiting free energy. Next we make the appropriate connections to other models. We
then obtain rigorous bounds on the limiting free energy and finally we discuss the results
of the Monte Carlo simulation.

2. A model of collapsed lattice animals

A lattice animal is defined to be any finite connected subgraph of dhdimensional
hypercubic latticez?. Consider a lattice animal with vertices, cyclomatic index, ande
edges. These three quantities are related through Euler’s relation

c=e—n+1. (2.2)

If a pair of vertices in the animal are near neighbours on the lattice and are not incident
on a common edge of the animal, we call this pair of verticepmtact Let the number

of contacts in the animal bie If an edge of the lattice is not an edge of the animal but is
incident on exactly one vertex in the animal, we call this edgelaent contactand write

s for the number of solvent contacts associated with the animal. Counting edges gives the
relation

2dn =2¢ + 2k +s (2.2)
and using (2.1),
s+2k+2c=2(d—-1Dn+ 2. (2.3)

Let a,(s, k) be the number (per lattice site) of animals withvertices,k contacts and
solvent contacts. In Flesiet al (1992) the following two-variable partition function was
defined

Zu(Br, B2) = ) an(s, k)&’ ek (2.4)
s.k

and the limit
nli—>moon_1 log Z, (B1, B2) = G(B1, B2) (2.5)

was shown to exist and to be a convex functiongpfand 8, and continuous for finites;
andpg,. These results hold for any hypercubic lattiéé. In the remainder of this paper we
focus on the two-dimensional case, the square lattice.

In the ‘collapsed’ phase g% goes to negative infinity, it is expected that the behaviour
of Z,(B1, B2) will be influenced to the greatest extent by those animals with the minimum
possible number of solvent contacts. Thus in order to study the collapsed region further we
focus our model on those animals with the minimum possible number of solvent contacts
and call these animalsollapsed Defines,,;,(n) = min{s | a,(s, k) > 0} and define the
partition function for collapsed animal® be

Zy(=00, B) = Y an(smin(n), k)€™ (2.6)
k
This notation is used for convenience and because of the definition abBpiepo, B2) #
limg,_._o Z,(B1, B2) = O but instead
Zi(00. fp) = M Z, (1. B2)e Prrn™ > gy (syin(n), 0). (2.7
1——00
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The limiting free energyfor this model is then defined to be
G(—o0, B) = lim n~tlog Z,(—o0, B) (2.8)

where the limit can be proved to exist and is finite for finite valueg ofA sketch of the
proof is given next and the full details are given in the appendix, sections A.1 and A.2. The
existence proof relies first on using properties of lattice animals with minimum perimeter
to show that for O< r < 2m,

m < spin(m? 4+ 1) < 4m + 4 (2.9)
and
a2 (Smin (mz)s k) < Amp24r (Smin (m2 + r), k) < 24m+0(m)aM2 (Smin (Mz)v k) (210)

where M = m + 1+ |/m]. Note that for any positive integer there exists integers
m = [n*?] andr, 0 < r < 2m, such thatn = m? + r. Thus settingm = [n'/?],
r = n —m?, multiplying by & and summing ovek in equation (2.10) gives that for amy

Zy2(—00, B) < Z,(—00, B) < 2"+ Z,12(—00, B). (2.11)

The next step of the proof involves using an appropriate concatenation argument to prove
that
lim m=2log Z,.2(—o0, B) (2.12)

m— 00

exists. The appropriate concatenation argument is similar to that used by Whittington and
Guttmann (1990) for self-avoiding walks which cross a square. Equation (2.11), along
with the existence of the limit in equation (2.12), guarantees the existence of the limit in
equation (2.8).

We note that from the definitions in equation (2.4) and (2.6)

™ 7, (—00, B2) < Zu(Ba, B2). (2.13)

Taking logarithms, dividing by:, letting n go to infinity in equation (2.13) and using the
fact that lim,_, o (sin(n)/n) = 0 (see equation (2.9)) gives

G (=00, B2) < G(B1, B2) (2.14)
for all B and B,. We lack an appropriate upper bound to prove that
P lim  G(B1, B2) = G(—00, B2) (2.15)
11— —00

however, it is expected that equation (2.15) is true.

3. Relationships with other models

In this section we establish relationships between the limiting free energy for collapsed lattice
animals and functions associated with some other combinatorial problems on the square
lattice. Establishing these connections allows us to obtain useful boundg-eso, 8) in
the next section.

Consider then x m grid graph,S(m), to be the subgraph of the square lattice induced
by the vertices{(i, j) | 0<i < m—1,0< j < m—1} C Z? Note thatS(m) is the
only (up to translation) collapsed animal with no contacts and wita m? vertices (see
the appendix, section A.1 for a justification of this). We next show that there is a direct
connection betweef,,.(—o0, ) and the reliability polynomial fots ().
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The reliability polynomial for ann vertex graphG (see Colbourn 1987, Welsh 1993b),
R(G; p), is defined as

RG:p) =) p" @@= py@=® (3.1)
B

where the sum is over all spanning connected subgr8pbsG ande(B) is the number of
edges inB. If one considers deleting each edge frainwith probability 1— p or keeping
it with probability p as in a bond percolation process, thR@G; p) is the probability that
the resulting graph is connected. A standard way, known ag'tferm (Colbourn 1987),
to expressR(G; p) is

b
RGip) =) Fp"'(1-p) (32)
i=0

whereb = ¢(G) and F; is the number of spanning connected subgraphS ebmposed of
b—i edges. For planar graphs, algorithms for calculafingre known (Liu and Chow 1983,
Rameshet al 1987, Myrvold 1992); however, there are no known polynomial algorithms
for calculatingR(G; p).

ConsiderG = S(m). In this casee(S(m)) = 2m? — 2m. If we defineB3,,; to be the
set of spanning connected subgraphss6f) with exactly 2n> — 2m — k edges and define
B, = Ur=0Bm.k, then the sum in equation (3.1) is over all element8gfand Fy, = |B,,.«|
in equation (3.2). Hence we obtain

Ru(p) = R(S(m)ip) =y Y p” " *1—p)

k>0 BEB,,,J(

o2 m2—2m+1 1— p k
=P 3B () . (3.3)
=0 p

However,|B,, | = a,2(4m, k) and hence

) m2—2m+1 1— p k
Ru(p) = R(S(m); p) = p*" 72" " ayz(4m, k) (p)
k=0

_ iy <_oo, log (1 -’ )) . (3.4)
p

If we definep = 1/1 + €® or equivalentlyg = log(1 — p/p), then the above equation can
be rewritten as

2 1
Zp2(— =1+ 2R, | —— ). 35
mz( 007.3) ( + ) <1+eﬂ) ( )
Taking logarithms, dividing byn?, and lettingm go to infinity in equation (3.5) gives that

G(—00, B) = 2log(1 + €®) + lim m~2logR,, ( (3.6)

1
1+ef )
SinceG(—oo, B) is finite for —oo < B < oo the limit

R(p) = lim m2logR,.(p) (3.7)

exists and is finite for < p < 1. Equation (3.6) yields

R(p) =G (—oo, log (l;p>> + 2logp. (3.8)
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The reliability polynomial R(G; p) of a graph G is directly related to the Tutte
polynomial 7(G; 1, 1/(1 — p)) (see Welsh 1993b and references therein). Gee S(m)
the two polynomials are related through the following equation:

Ru(p) = p" (A — p)" 21T (S(m); 1, 1/(1 — p)). (3.9)
This implies that
G(—o00, B) = B+ lim m2logT (S(m); 1,1+ e ). (3.10)

For any planar grapls, T(G; 1, 2) counts the number of spanning forests of the duak of
(see Brylawski and Oxley 1992, p 131). gpanning foresof a graphG is any subgraph
(not necessarily connected) 6f which contains all the vertices @ and has no cycles.
Thus G (—o0, 0) is the growth constant for the total number of spanning forests of the dual
of S(m) in addition to being the growth constant for the total number of spanning connected
subgraphs ofS(m). In our case, because of the self-dual nature of the square lattice, it is
possible to find a relationship betwed, (p), Z,,2(—o0, B) and the generating function

for the k edge spanning forests ¢f(m). Given the graphS(m), its dual graphS*(m) is
obtained by placing a vertex in the middle of each squaré&(ef) and placing a vertex

v, outsideS(m). Two vertices inS*(m) are then joined by an edge if the corresponding
squares inS(m) share a common edge and each vertex on the bounda{(a is joined

by an edge ta,. Thus the vertex set o*(m) equals the vertex set &f(m — 1) union v,

and the edge set equals the edge sef(@f — 1) union the edges joining the boundary of
S(m — 1) to v,. Define f, to be the number of spanning forests $f(m) with k£ edges.

m,

Define the generating function for this sequence of numbers to be

FanB) =Y frr€™. (3.12)
k

In addition we definef,, , to be the number of spanning forestsSifn) with k£ edges and
the generating function for this sequence as

FnB) = fus€™. (3.12)
k
We claim that

G(—00, B) = lim m~2log F:(B) = lim m~2log F,,(B). (3.13)

The proof of this is given in the appendix, section A.3.
Finally we note thatR,,(p) corresponds to the partition function for the ca@e= 0
of the random-cluster model. In particular, given a grapkhe random-cluster model (see
Welsh 1993a) forG consists of a random process on the edge Kéfy), of G such that
the probability of choosing the edge s&tC E(G) is given by:
plAI(L — p)lEG)=4l gk(A) 3 plAl(L — p)lEG)-4l gk(a)-1
Y ack@ PI(L— p)E@-AIQkA) - z

wherek(A) is the number of connected components of the edgel satd where

Z = Z pIA\(l_p)\E(G)—AIQk(A)—l
ACE(G)

na(p, Q) = (3.14)

is the partition function. IfQ is a positive integer then the random-cluster model is related
to the Q state Pott's model and in the special ca@e= 1 the random-cluster model
corresponds to bond percolation on the edgesgr). If one letsQ and p go to zero

at the same rate (for example @f = Ap) then, as pointed out by Fortuin and Kasteleyan



7072 L M Stratychuk ad C E Soteros

(1972) and Seno and Vanderzande (1994), in the limit one obtains the spanning trees of
G. Thus, in this limit withG = S(m), one obtains a special class of the collapsed lattice
animals, the spanning trees 8tm), for which there are no cycles. On the other hand if
one letsQ go to zero for fixedp then, whenQ = 0, the terms which contribute t8 are

the terms withk(A) = 1, i.e. the set of all spanning connected subgraphG,ao that for

0 = 0 we havez = R(G; p).

4. Bounds onG(—oc, B)

In this section we use the connections made in the last section and results from the Flesia
et al (1994) study ofG (81, B2) to obtain bounds o1t; (—oo, 8).
Following the derivation in Flesiat al (1994) of bounds foiG (81, B2), it is possible
to obtain bounds foG(—o0, 8). In particular, the combinatorial inequality of Flestal
(1994) (equation (4.1)) witld = 2 gives

(” ik ; Smin(1)/ Z)an(smm(n), 0 < (k j J )an(sm,-n(n), k4 )

< (2” —k _]i””"”(”)/ Z)an(smm(m, k). (4.1)

Settingk = 0 in equation (4.1), multiplying through by*eand summing ovey gives
(1 + eﬁ)n+1is”“n(”)/2an (Smin (”)a 0) g Zn(—OO, :3) < (1 + eﬁ)2’17S'””l(,1)/2a11 (Smin (”)a 0) (42)

Sincea,,2(4m, 0) = 1, takingm = [n*?|, r = n — m? andk = 0 in equation (2.10) gives

1 < @y ($min(n), 0) < 2% H00™) (4.3)
so that
nleoorfl loga, (sypin(n), 0) = 0. 4.4)

Thus taking logarithms, dividing by and lettingn go to infinity in equation (4.2) gives
the bounds
log(1+ €’) < G(—o0, B) < 2log(1 + €°). (4.5)

Similarly, settingk =n+1— j — s,,;,(n)/2 in equation (4.1), multiplying throughout by
eflrti=j=sin/21 - summing overj, and then rearranging the order of the inequalities leads
to

-1
(nz_n 1) 1+ eﬁ)nJrlan (Smin(m), n + 1 — spin (n)/Z) < Z,(—o0, B)

< (1 + eﬁ)n+lan (smin (l’l), n+ 1- Smin (I’l)/Z) (46)

Lattice animals withn vertices and satisfying = s,,;,(n), k = n + 1 — 5,,;,(n)/2 are the
n vertex lattice animals with the maximum number of contacts. Thus from theorem 4.2 of
Madraset al (1990) and equation (2.10)

Ilm n_l Iog an (smin (n)v n + 1 — Smin (I’l)/Z) = 4C/7T (47)

n—o00

where( is Catalan’s constant. Taking logarithms, dividing/bwand lettingn go to infinity
in equation (4.6) gives the bounds

log(1+ €’) —2log2+4C/m < G(—o0, B) < log(l+€’)+4C/n.  (4.8)
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In addition,

tn (Smin (1), 1+ L = $p0in (n) /270 /2 < 7, (—00, B) (4.9)
so that

X B<Goop) (4.10)
In summary,
B < —log(e®/™ — 1) log(1+ €°)
p > —log(e*/" — 1) % + B } Sl i

2log(1+ €°) B < log(e®/™ — 1)
) [ log(1 + &*) + % B > log(e“/™ — 1. @32

Flesiaet al (1994) found that the connection between bond percolation and the two-
variable model leads to the upper bound

G (B, B2) < 2log(1 + %) (4.13)

for B, > 0 and for allg; < B2 — %Iog(l + €%2) (see equation (4.14) of their paper).
Equation (2.14) then implies that

G(—o0, B) < 2log(l+ &%) (4.14)

for g > 0.

Using the connection to the reliability polynomial it is possible to extend the strict
inequality in equation (4.14) to all finite values gf To do this we need to introduce a
few definitions. Acut setC for a connected graply is a set of edges off which when
removed fromG yield a disconnected spanning subgraptGefG — C. A cut setC of G
is minimal if adding in any edge o€ to the graphG — C results in a spanning connected
subgraph ofG. LetC ={C; | i =1,..., s} be a set of pairwise disjoint cut sets Gfthen
the following is a standard result from reliability theory (Colbourn 1987)

[1- - p)] (4.15)
1

R(G; p) <

)
i=

where the product on the right is the probability, in the bond percolation process on
described in section 3, that at least one edge in each cut set is not deleted. A useful choice
of C for the caseG = S(m) is a set of minimal cut sets each composed of four edges
and obtained as follows. The set of four edges incident on a vertex of degred§(4)n

is a minimal cut set ofS(mm). If one considers any set of degree 4 verticessofi) such

that no two vertices are joined by an edge, then the four-edge minimal cut sets associated
with these vertices are pairwise disjoint. Fereven, one can chooge: — 2)2/2 degree 4
vertices ofS(m) so that no two vertices are joined by an edge and hence

Ru(p) < (L— (1 — p)Hh™m-2°/2, (4.16)

Form odd, one can choos@m — 1)2/2) —m + 2 degree 4 vertices df(m) so that no two
vertices are joined by an edge and hence

Ru(p) < (1= (1= p)h(n-1%/2-m+2, (4.17)
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Taking logarithms, dividing byz? and lettingm go to infinity in equations (4.16) and (4.17)
implies that

R(p) < 3log(1— (1 — p)%) (4.18)

where the term on the right-hand side is strictly less than zergfer 1. Using this in
equation (3.6) withp = 1/1 + €’ gives

1 ¢\
G( oo,5)<2|og(1+eﬂ)+2|og[1 <1+eﬁ>} (4.19)
where the term on the right-hand side is strictly less than @lage®) for all finite values
of 8.
It is also possible to get an improved upper bound@r-oco, 8) for the regiong > 0
using equation (3.13) and an upper boundZn8) in terms of the generating function of
the number ofooted spanning forests a§(m). In particular, it is well known (see Stanley
1989) that the generating function for the number of rooted spanning forests willges
of a graph can be obtained from the characteristic polynomial for the adjacency matrix
of the graph. In a rooted spanning forest there is a distinguished vertex in each connected
component of the forest. Each spanning forest wittdges inS(m) hasm?—k components
and thus is weighted by a factefx, . . . x,,2_, in the generating function for rooted spanning
forests of S(m), wherex; is the number of vertices in thi¢h connected component of the
forest. Thus clearlyF,,(8) cannot be obtained easily from the rooted spanning forest
generating function. However, the rooted spanning forest generating function is an upper
bound forF,,(B) and this bound should be sharp for lagevhen 7,,(8) is dominated by
one-component spanning trees. In particular, it can be shown (see equation (18) of Kornilov
and Priezzhev (1994) with = €’ andz = 1) that the limiting free energyF” (8), of the
rooted spanning forest generating function fgm) satisfies

F(B)=8+ ﬂfzf / log(4 4+ e # — 2 cosfy — 2 cosd,) db; dby. (4.20)
0 0

We note that this free energy is analytic and hence there is no phase transition for rooted
spanning forests (see Kornilov and Priezzhev (1994) for a more detailed discussion of the
thermodynamics of this model). Furthermore, as expectéds) approachesdC/n) + 8

as j goes to infinity. Thus

G(—o00,B) < B+ n*Z/ f log(4 + e ? — 2cos9; — 2 costs) do; db, (4.22)
0 0

and this bound becomes sharpergagoes to infinity.

Finally, we can obtain some new bounds for batigi, 82) and G(—oo, 8) by
considering the special case of directed lattice animals. The results presented here are
based on the results of Dhar (1987) on the collapse of directed animalseded animal
on the square lattice is a connected subgraph wértices (including the origin) such that
a vertex with coordinateg, j) belongs to the animal only if it is the origin or at least one
of its predecessor verticas — 1, j) and (i, j — 1) belongs to the animal. Defing to be
the number of vertices of the animal with one predecessor in the animalatadbe the
number of vertices of the animal with two predecessors in the animal. For each animal we
can also define to be the number of solvent contacts antb be the number of contacts
of the animal where the meaning of these quantities is the same as for undirected animals.
Let e be the number of edges in the directed aninea N; in Dhar's notation). Note
thatn, is the cyclomatic index of the animal (see equatiob) &f Dhar’s paper) and hence
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ny =n+1—k—s/2. Also note that for each vertex with two predecessors, either of the two
predecessor edgdshe edges between a vertex and its predecessor vertices) can be removed
without disconnecting the animal. For any vertex with only one predecessor, removal of
the predecessor edge automatically creates something that is not a directed animal.
Define A, s« to be the number of directed animals withvertices,s solvent contacts
andk contacts. The above discussion tells us that starting with a directed animal with no
contacts (i.en, = n — s/2+ 1) we can create an animal withcontacts by removing one
predecessor edge from akhyvertices with two predecessor edges. There are two choices
of an edge for each vertex with two predecessor edges, thus

—s5/2+4+1
An.s,k = (r;:)zkAn,s,O = (n s]i + >2kAn,s,0' (422)

Consider pure directed bond percolation on the lattice. Each bond is considered open
with probability pp and a vertex is open only if it is connected by an open bond to at least
one of its open predecessors. The probability that the origin is in a connected open cluster
consisting of exactly: open vertices is then

Prob(|C| =n) =) Ausx(pp)® /> (1 — pp)**/? (4.23)
s,k
which can be obtained from equation (4) of Dhar's paper by taling= 1. In this case
only half the solvent contacts are required to be closed. The remaining solvent contacts are
predecessor edges which go from a vertex not in the animal to a vertex in the animal and
such edges, open or closed, cannot be edges in the animal.
Using equation (4.22) in equation (4.23) yields

1— s/2
P,(ps) = Prob(|Cl =n) = p3' > Ayo [ ) ”B]
3 B

(n—s/2+1) k
x 3 ("_S/2+l>2k [1_”3} . (4.24)

=0 k P
Thus
1— Ps s/2 2_ DB n—s/2+1
P,(pp) =p2) A, [ } 4.25
PB Pp Z ,0 s s ( )
and
n—1 n+1 1-ps 2
Pu(ps) = Pl @ pa)"* ) Anso| 5| - (4.26)
s — VB
Define the solvent model partition function for directed site animals: Q) by
Dy(B) =) Ay o€ (4.27)
and its limiting free energy by
D(B) = lim ntlogD,(B). (4.28)
Similarly define the two-variable partition function for directed animals by
Z,(Br, B2) = Y A s i€ (4.29)
s,k

and its limiting free energy by
G(B1. p2) = lim n"*log Z, (B1. f2)- (4.30)
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Then settings = %Iog(éjgg) (i.e. pp = %) in equation (4.28) foB < —3log2 and

using equation (4.26) we obtain:
D(B) = 2log(l — ) — log(1 — 2#) + nleoon—l log P, (11__25:> ) (4.31)
In addition, equations (4.22), (4.29) and (4.30) imply

G(B1. B2) = log(1 + 26*) + D(By — 5 log(1 + 2€)). (4.32)
From directed percolation it is known that

lim n~tlog P,(pg) =0 for pp > pgc ~ 0.6447

. (4.33)
lim n~*log P,(ps) <O for pz < pac.
Thus
_ 5 5 Lioa(I—psc)
= 2log(1 — ) — log(1 — 2¢?) B < =log ~ —0.6694
D(B) 2 2— pac
B 8 1 1 1-pse
< 2log(1 — %) — log(1 — 2&¥) —Zlog2> B > - log .
2 2 2— ppc
(4.34)
Hence forp; — Jlog(1+ 2€%) < —Tlog 2,
= 2log(1+ 26> — &P1) — log(1 + 2&’2 — 2¢?P)
B1— % log(1 + 2€%) < %Iog <;_ pBC)
G(B1. B2) Pre (4.35)

< 2log(1 + 2€%2 — %) —log(1 + 2€2 — 2&1)

1 1, (1-psc
— Zlog(1 +2€%) > |
Pr— 5 log(d+ e5)>209<2_p36)

and thusG(B1, B2) is analytic everywhere in the regi(%mg (ﬂ) > ﬂl—% log(142€%)

2—psc
and there is a curve of collapse-phase transitions inghes,) plane given by the equation
1 1-
log (= —LEC) = gy — Llog(l + 2¢%). (4.36)
2 2— ppc

(A similar conclusion was obtained recently and independently by Henkel and Seno (1996)
for the grand canonical two-variable partition function of directed animals.) The full curve
in figure 1 is a graph of the collapse-phase boundary given by equation (4.36). Also note
that, in the region to the left of this phase boundary where the limiting free energy is known
exactly and is analytic, one can calculate the heat capacity defined by

9*°G(B1. B2)
o5

It is found that for a range of fixed values gf, C(81, B2) can have a local maximum at a

B2 value, 83, such thaig; > Iog[(;:%)ez‘91 — 1] —log 2 (or equivalently the poiniss, B3)

is to the left of the phase boundary given in equation (4.36)). The broken curve on figure 1

is a graph ofg; as a function of8;. Therefore, in the directed animal two-variable model

one has a curve of heat capacity maximums which do not correspond to a phase transition.
The above results lead to new bounds®@(B;, 2) and G(—oo, 8). Clearly,

An.s.k g Cln(S, k) (438)

CB1, B2) = (4.37)
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3 T T

Figure 1. A B versusp; plot of the directed animal collapse transition phase boundary
(equation (4.36)) shown here as a full curve. The broken curve indicates the locatigns (
of local maxima for fixedd; of the functionC (81, B2); this line does not correspond to a phase
boundary.

Hence forg, — Jlog(1 + 2€%) < 3 Iog(%ﬁ;’(‘;) ~ —0.6694

2log(1 + 26”2 — &) — log(1 + 26”2 — 2€1) < G (B, B2) (4.39)
and for all
log(1+ 2¢®) < G(—o0, B). (4.40)
Resummarizing the bounds far(—oo, B) gives
B < —loge¥*/™ —2) log(1+ 2€%)
B > —log(€“/™ — 2) % +8 } e @40

G(— y<min{2lo (1+eﬂ)+1lo 1—( e )4 F(B),lo (1+ef‘)+4c
00, B) < g > g I ) B), log =

(4.42)

where at least for-2 < B < 2, F7(8) < log(1 + €®) +4C/rm. In figure 2 we plot the
lower and upper bounds given by equations (4.41) and (4.42) for the rakge < 2.

5. Monte Carlo simulation

As indicated by equations (2.10) and (2.11), the behaviou6 6foo, 8) is determined

by the sequence of collapsed animals with vertices. We thus focus our Monte Carlo
algorithm on such animals and we study the set of spanning connected subgrafihg ,of

B, directly as opposed to studying the reliability or spanning forest problems. To do this
we have developed a Metropolis-style dynamic Monte Carlo algorithm which generates a
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Figure 2. The bounds in equations (4.41) and (4.42) are plotted vegsass full curves.

Markov chain on the state spa#%,. For a fixed value of3, the generated Markov chain
is such that its unique equilibrium distribution satisfies

k

e
np(A) = m (5.1)

where for anyA € B,,, ug(A) is the probability that the chain is in stateand wherek is
the number of contacts in the spanning connected subgtaph

The algorithm is as follows. We start at time= 0 with any spanning connected
subgraph, of S(m). Suppose at time> 0O the state of the Markov chainls = A € B, ;.
Then, an edge is chosen uniformly at random from the entire set 8f?2- 2m edges in
S(m). If e is an edge (a contact) of the animilwe attempt to remove (add) this edge from
(to) A to create a new animal’. If this move is not accepted théf},; = A. The transition
probabilities for these moves are determined by the Boltzmann weights associatedl with
and A’ and whether or not the graph resulting from the move is connected. In particular, if
e is a contact of the animal then we can always add this edgeAowithout affecting the
connectedness of the animal and create an anithal B,, ,—1; in this case we accept the
move with probability migl, e #} and thus

Prob(X,,1 = A'|X, = A) = min{1, e #}. (5.2)

1
2m2 — 2m
If e is an edge of the animal then we determine if removal efwill disconnect the animal.
If removal of e disconnects the animal then we do not make any movexapd= A. On
the other hand if removal af leaves the animal connected then we can remeomed create
an animalA’ € B,, s, 1; in this case we accept the move with probability fdire’}, so that

Prob(X,,1 = A'|X, = A) = %Zm min{1, €°}. (5.3)

MZ
Of course the efficiency of this algorithm is limited by the efficiency of the connectedness
check step. However, we take advantage of the fact that at most one edge changes in the
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graph at each step and are able to minimize the loss of efficiency due to the connectedness
check (see Paulhus 1994). Note that the Markov ch#in satisfies the detailed balance
condition

Prob(X, 11 = A'|X; = A)ug(A) = Prob( X, 11 = A|X, = A)ug(A’)  (5.4)

and thus the chairX,} is reversible. The chain is also irreducible because it is always
possible to get from one spanning connected subgrépbf S(m) to another spanning
connected subgraph” of S(m) by a sequence of edge additions and edge deletions. For
example, first add tol’ all the edges corresponding to contactsdinto obtain S(m) and
then delete the edges $\m) corresponding to the contacts i’. Finally, because the
chain is irreducible and because of the rejection techniques used in the algorithm (which
ensure there exists a statesuch that ProfX,.; = A|X, = A) > 0), the chain is aperiodic.
These properties (equation (5.4), irreducibility, and aperiodicity) guarantee that the Markov
chain{X,} is ergodic and has the unique equilibrium distribution given by equation (5.1).
Due to limitations in storage space we chose the method of block averages (see Law
and Kelton 1982) for collecting data and estimating the autocorrelationdimésee Sokal
1989). We assumed that sampling the Markov chain after an initial equilibration time of at
least 1@;,, would be sampling from the distributiqng. We also assumed that for time steps
greater than 1f),, estimates of an average quantity from two distinct blocks each of length
at least 2;,, would be essentially independent estimates. For a total nhumber of vertices
n = m?, we observed that;,, grows faster than linearly but less than quadratically with
Using estimates of;,, and the above assumptions, we obtained 40 essentially independent
observations of each variable for eaclvalue. For example, fot = 9, 40 blocks each of
size 5x 10* were used, while forn = 196, 40 blocks each of size3x 10° were used.
In order to investigate the possible singular behaviou 6f oo, 8), we define the heat
capacity
_,&logZ,(—o0, B) _ var(k)
dp? oon
where the variance ok is calculated over the probability distributions defined in
equation (5.1). We can therefore estiméigg) using the Monte Carlo algorithm described
above. Estimates af,2(8) for m = 2, 3, 4 from our Monte Carlo simulation compare well
with exact values which can be obtained from the exact enumeration data reported in Madras
et al (1990). In figure 3 we show our estimates@f-(8) for m = 8, 10, 12, 14, 20, 30, 40
and for a range of values. The error bars at eaghgive a 95% confidence interval for
the average over 40 values 6f(8). For a given value ofz, the graph ofC,,2(8) versus
B attains a maximum value on the intervle (—1.5,0). As m increases the maximum
values,h,2, are increasing withn but at a rate which is decreasing rasgets larger. The
location of the maximum§,,z, becomes less negative asincreases. In order to quantify
this behaviour, we have estimatég., the peak height, and,:, the peak location, for
m=3,...,15 20, 30, 40, 50, 60 by fitting a polynomial to the estimated values®f.(8).
We next obtained, by a jack-knife procedure, estimates of the variances of the peak height
and peak location. Figure 4 shows a plot of the estimates, ofversus ¥m. Figure 5
shows a plot of the estimates Bf,. versus ¥m. In both cases the peak height and peak
location appear to be approaching, approximately linearly with,la constant as: goes to
infinity. To make this more precise we assume thatand 3, satisfy the following scaling
forms asn goes to infinity,

Bu ~ Boo — ban™" (5.6)
hy ~ hoo — c1n™ V2. (5.7)

C,(B) =n (5.5)
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Figure 3. The heat capacity(,,2, versusg for m = 8, 10, 12, 14, 20, 30, 40. The broke curves
are guides to the eye. The error bars are 95% confidence intervals.

In order to estimate8,, we assume that for large enough
.BAn = /§oo —bnV. (5.8)

For a fixed value ofy, andn > N,,;, we perform a two-parameter weighted linear least
squares fit to find,, and b in equation (5.8) and then vany in order to minimize the
x? statistic of the fit. TakingV,,;, = 49, we obtain our best estimate #t= 0.508 and
estimates, to be

— 0.82 0.005=+ 0.07. (5.9)

The first error term gives a 95% confidence intervaldgrbased on the weighted linear least
squares fit. The second error term is a systematic error estimated by comparing our estimate
to another estimate obtained by takig,, = 121. Next, we assume that, = —0.82 in
equation (5.6) and obtain an estimate §ar That is, we perform a two-parameter weighted
linear least squares fit to find lég and —v/; in the equation

log(Boe — Bu) = —¥1l0gn + loghby. (5.10)
From this procedure we obtain our best estimateyfoito be
0.50+0.03+0.3. (5.11)

We then follow the same procedure to get estimatés,obndy,. We find our best estimate
wheny = 0.459 and estimaté., to be

0.3553+ 0.0006+ 0.02 (5.12)
and our best estimate of; is
0.4594 0.005+ 0.2. (5.13)

We followed a similar procedure and attempted ta:fito scaling forms other than that
given in equation (5.7), for examplg, ~ bn¥ andh, ~ b(logn)¥; however, the scaling
form of equation (5.7) yielded the best fit. We therefore conclude that the peak heights are
going to a constant,, as estimated above. From looking at the plotCpfg) for wide
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Figure 4. The estimated value of,,> versus ¥m for m = 3, ..., 15,20, 30, 40, 50, 60. The
error bars are estimates of 95% confidence intervals.

Figure 5. The estimated value cﬁmz versus ¥m form = 3,...,15, 20, 30,40, 50,60. The
error bars are estimates of 95% confidence intervals.

ranges ofg, it appears that the function@,(8) have a bounded continuous limit agjoes

to infinity and that hence the second derivative@f—oo, 8) exists for all 8. Thus we

find no evidence for a second-order collapse—collapse phase transition. This does not rule
out the possibility of a higher-order phase transition or even a first-order phase transition.
We investigated higher-order derivatives Bf(—oo, 8); however, the fluctuations in the

data were too large to draw any conclusions about even the third or fourth derivatives.
Furthermore, from the results obtained figs, we cannot rule out the possibility that the
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correct scaling form for,, is

C1+
N

which would be the scaling form for, if there was no collapse—collapse phase transition
and where the A,/n term is a finite size surface correction term (Barber 1983).

Cc2

hy ~ co+ 4+ (5.14)

n

6. Discussion

In summary, we have introduced a model for studying collapsed lattice animals and proved
that the limiting free energy exists for this model. We are also able to establish that the
partition function for collapsed lattice animals is directly related to the reliability polynomial
for them x m grid graph and the limiting free energy is related to the generating function
for spanning forests of the x m grid graph. In addition we obtain rigorous bounds for the
free energy of collapsed lattice animals and a new lower bound for the free energy of the
two-variable lattice animal model. Although we do not rigorously establish the existence
or non-existence of a collapse—collapse transition, our results provide strong evidence for
the fact that if a collapse—collapse phase transition exists for this model then it is not a
second-order phase transition.

The results for directed animals indicate that a curve of heat capacity peaks occurs
without any corresponding phase transition. The same may be the case for general lattice
animals and hence there may be no collapse—collapse transition for the general two-variable
lattice animal model. However, one important feature for the lattice animal problem which
is missing from the directed animal problem is the following. There is evidence that there
are two universality classes for the collapse of lattice animals (Fé#sa41992, Seno and
Vanderzande 1994) and that the line of heat capacity peaks in the collapsed region (for
increasing values of,) intersects the line of collapse transition points at the dividing point
for the two universality classes (thought to be the point corresponding to bond percolation).
Hence the heat capacity peaks in the collapsed region may be of interest even if there is
no collapse—collapse transition. From our Monte Carlo results we are able to estimate the
peak location and height fgt, = —oo. We also point out that even if one proves that there
is no collapse—collapse transition @t = —oo this does not necessarily imply that there is
no collapse—collapse transition f8f > —oc and in particular it is still an open problem to
show that

ﬂliﬁjooG(ﬂl, B2) = G(—00, B2). (6.1)
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Appendix

A.1. Proof of equations (2.8) and (2.9)

We consider first the set of animals withvertices,s,,;,(n) solvent contacts anéd = 0
contacts and call these tlemllapsed site animals Due to the minimum solvent contact
requirement such animals will have no holes in their interior and their boundary will form
a convex polygon. (Aonvex polygoris a self-avoiding polygon with the property that any
line on the dual lattice intersects the polygon in either zero or two edges of the polygon
(see Enting and Guttman 1990).) Furthermore, given a collapsed site animal we can create
its dual animal by placing a square cell around each vertex of the original animal. The
dual animal then has exactly,;,(n) edges in its polygonal boundary andinterior cells

(i.e. arean). Hencea,(sin(n),0) = pys,..cy Wherep, , is the number of self-avoiding
polygons on the square lattice with edges enclosing an area ofunit cells (see Enting

and Guttmann 1990). For fixed areathe polygons with the least number of edges (i.e.
smallest perimeter) are convex 8X(smin (1), 0) = pu.s,..cy Where p, , is the number of
convex polygons withn edges enclosing an areaminit cells. Next note that,;,(n) has

two possible forms, eithes,,;,(n) = 4m for somem ofr s,,;,(n) = 4m + 2 for somem. In
particular, if we sets = 4m and ask for site animals with the largest number of vertices,
then an appropriate isoperimetric inequality guarantees that there is exactly one such lattice
animal which forms a square with? vertices. That is,,2(4m, 0) = 1. Similarly, if we set

s = 4m + 2 and ask for site animals with the largest possible number of vertices then there
are two such animals both of which aneby m+1 rectangles so that, .11, (4m+2, 0) = 2.

Since for any positive integer there exists integera = [nY/?| andr, 0 < r < 2m, such

thatn = m? + r, thens,,;,(n) satisfies

AnY?| = dm < spin(n) < dm +4=4nY?) + 4 (A1)

and furthermore for G< r < m, s,,;,(n) = dm+2 and form < r < 2m+1, 5, (n) = 4m+4.

We can obtain a lower bound ar) (s,;, (n), 0) by noting first that if one adds a single
edge to the outside of the = m? square site animal one increases the number of vertices
by one and the number of solvent contacts by two. If one adds two parallel edges onto
neighbouring solvent contacts on one face of the square animal then one increases the
number of vertices by two and the number of solvent contacts by two. Similarly, if one
replacesr neighbouring solvents on one side of the square animal by edg€s-(x m)
then one increases the number of vertices land the number of solvent contacts by two.
In this process we replace any contacts that are created by edges so that the resulting animal
is a site animal. Thus for £ r < m,

m—r+1<a,2.,(4m+20) = amz+,(smi,,(m2 +r),0). (A.2)

The same argument indicates that each animal witvertices, #: solvent contacts ankl
contacts is contained in at least one animal with+ r vertices, 4 + 2 solvent contacts
andk contacts. Thus for X r < m

(m —r + Va2 (4m, k) < apery (dm + 2, k) = a2 (Spin(m? + 1), k). (A.3)

A similar argument involving adding edges to a long side ofraby m + 1 rectangle yields
the lower bound

(m —-r+ Z)am2+m (4111 + 27 k) < Am24m+r (41’}’1 + 4a k) = Am24m+r (Smin (mZ +m + r)v k)
(A.4)
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where 1< r <m + 1. We note also that for X r <m

Am24r (4m+2,0) = ﬁm2+1‘,4m+2 < 134m+2 < 24m+2+0(m) (AS)
and for 1< r <m+1
A2 4m+r (4m + 45 0) = pAl112+m+r,4m+4 g 134m+4 g 24m+4+0(m) (A6)

where p,, is the total number of convex polygons withedges. The last inequality comes
from the fact that lim_..(21) " log p2, = 2 (Delest and Viennot 1984).

We next show that each collapsed site animal is a subgraph of a square site animal. For
a collapsed site animal with = m? + r, 1 < r < m, vertices ands = 4m + 2 solvent
contacts, its dual animal (with a convex polygon as its boundary) is bounded by a rectangle
with perimeter % + 2 (see for example Bousquetélbu and Edou 1995) and areasuch
thatm? +r < a < m?+m (sincem? +m is the maximum area bounded by a polygon with
4m + 2 edges). All such bounding rectangles have dimensiors by m + 1+ for some
I > 0 such thatm —)(m +1+1) > m?>+1 and hencé < [vVm —  — 3]. Similarly, for a
collapsed site animal with = m? +m+r, 1 < r < m+1, vertices and = 4m + 4 solvent
contacts, its dual animal is bounded by a rectangle with perimeie+ 4 and area: such
thatm? +m 4+ r < a < (m + 1)%. Such bounding rectangles have dimensions 1 — [
by m 4+ 141 for somel > 0 such thatm 4+ 1)2 — 1> > m? + m + 1 and hencé < |/m].
Therefore in either case discussed above the length of the longest side of the bounding
rectangle is at most + 1+ [m*/?].

To determine what the above discussion about the dual animal implies for the original
collapsed site animal we note the following. Consider a rectangular site animalwith
vertices and solvent contacts. Its dual animal is a rectangle with perimeterd area:. If
there aren vertices on a side of the original rectangular site animal then the corresponding
side of the dual rectangle has; edges. Hence the discussion in the previous paragraph
implies that a collapsed site animal with= m?+r, 1 < r < 2m+1, vertices is a subgraph
of a rectangular site animal with its longest side having at mostl + |m*?| vertices and
thus it is a subgraph of a square site animal with+ 1 4+ |mY2])? vertices. This gives
the following bound

a2 (Smin(m? + 1), k) < [arz (AM )]z 17 ($min(m® + 1), 0)] (A7)
for 1 <r <2mandM =m + 1+ [m¥?]. Equations (A.3)—(A.7) give that
2 (A, k) < a2y (Smin (M + 1), k) < apz(AM, k) Pamra < apz(dM, k)20 (A8)
and this gives equation (2.10).

A.2. Proof of the existence of the limit in equation (2.11)

Using arguments similar to those used in Whittington and Guttmann (1990) for self-avoiding
walks which cross a square, we next show that the limit
lim m=2l0g Z,.2(—o0, B) (A.9)

mz—>00

exists. Consider aM x M square grid ofM rows of M vertices,S(M), we can create
an animal which spans this grid by covering it with animals which span a smallemn
square,S(m). Note thatS(m) has 2#? — 2m edges andn? vertices. DefineB3,, ; to be
the set of spanning connected subgraphss@#) with exactly 2n2 — 2m — k edges or,
equivalently, the set of lattice animals with= m? vertices,s = s,,i,(n) = 4m solvent
contacts anc contacts. ThusB,, ;| = a,2(4m, k). Define B,, = Uy>oB,x. Fix anym.
Now for any integerM > O there exists integerg > 0 andg > 0 such thatM = pm + ¢
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where 0< g < m. Fix suchp andg. Let By, ...,kaz be a set ofp? animals inB,,

with k1, ..., k,. contacts respectively. We can create an animal which spana/tikeM
square grid by first building up am x pm square using th@? animalsB,,, ..., B, In

the resultingpm x pm square, we join each pair of neighbouring vertices which belong
to different animals by an edge and thus obtain an animd,jp with Zi”:l k; contacts.
Finally, put the bottom left corner of this animal in the corresponding corner aff an M
square grid and add to the animal all the edges ofithe M grid that are not already either

edges or contacts of the animal. We thus obtain an anim#,inwith Z{’:l k; contacts.
This concatenation argument implies the following

pZ
> [ [am>(@m. k) < aye(aM. k). (A.10)
ki i=1, . 20 ik} =1

Multiplying both sides by & and then summing over in (A.10) yields
[Z,2(—00, B < Zyg2(—00, ). (A11)

The number of connected spanning subgraph®(#f) is certainly less than the total number
of spanning subgraphs ¢f(M) so that

2 _
ay2(4M, k) < (2M L 2M> (A.12)
and thus
Zyz(—00, B) < (1+ €/)21-2M, (A.13)
Equation (A.13) implies that
[Zye(—o00, HIYM < 1+ €2 (A.14)

Whittington and Guttmann (1990) (see also Madras 1995) proved that the limit
lim; . L™?logW,. exists and is finite for a sequene¢®,2)7 , if for any m, p and
q<m

[vaz]p2 < W2 (Al5)
whereM = pm + ¢, and if there exists a finite numb@ > 0 such that for allL
[W.2]YY < B. (A.16)

Thus from equations (A.11) and (A.14), we can conclude that, for fixed fihithe limit in
equation (2.12) exists and is finite. This combined with equation (2.11) proves the existence
of the limiting free energyG (—oo, B).

A.3. Proof of equation (3.13)

In this section we prove equation (3.13). We begin by showing that
ZmZ(—OO, ﬂ) = F:,(ﬂ) (Al?)

and hence obtain the first equality in equation (3.13). To show this we define a bijection
between the seB, ; of spanning connected subgraphs$gfn) with k£ contacts and the

set F,; , of spanning forests of*(m) with k edges. We note that the definition of the
dual provides a bijection between the edgesS6f1) and the edges a$*(m). Under this
bijection an edge irs*(m) corresponds to the edge it crossesSiim). Given a spanning
subgraphA of S(m) with k contacts we can construct a spanning subgraplof S*(m)
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which consists of all the vertices if*(m) and only the edges i8*(m) corresponding to
thek contact edges of in S(m). We note that a subgraph of S(m) is disconnected if and
only if there exists a set of vertices df whose ‘boundary’ (here this means edges im)
but not in A which are incident on exactly one vertex a) in S(m) consists entirely of
contacts. Furthermore there exists a set of verticed afhose boundary ir§ (m) consists
entirely of contacts if and only ifA* contains a cycle. Thud is a spanning connected
subgraph ofS(m) if and only if A* is a spanning forest o§*(m). Thusa,.(4m, k) = f, ,
and equation (A.17) follows.

To show that the next equality in equation (3.13) holdsTlgt;  be a spanning forest
of S(m — 1) with k edges. Because the vertex 3&t5*(m)) = V(S(m — 1)) U{v,}, Tn—1.x
plus the vertex, forms a spanning forest df*(m) with k edges. Thus

Sk < for e (A.18)

Next let 7, . be a spanning forest df*(m) and suppose the degree wf in this forest is
Jj,» 0< j < 4m — 4. Then removing thg edges adjacent to, yields a spanning forest of
S(m — 1) with k — j edges. The resulting spanning forestSgin — 1) could have been
obtained from at mos(t“m]f“) different spanning forests df*(m). Thus

min{k,4m—4} dm —
Jok < Z ( . )fml,kj- (A.19)
j=0 I
Using equations (A.18) and (A.19) we obtain
D fueri€ <Y @t <A+ faneh (A.20)
k k k

Taking logarithms, dividing byn? and lettingm go to infinity in equation (A.20) gives
equation (3.13).
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