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Abstract. In this paper a two-dimensional model of collapsed lattice animals with nearest-
neighbour contact interactions is introduced and the limiting free energy for the model is proved
to exist. We also establish that the partition function for collapsed lattice animals is related to
the reliability polynomial for them×m grid graph and to the generating function for spanning
forests on them × m grid graph. From these relationships and using results about directed
animals we are able to obtain rigorous upper and lower bounds on the free energy for collapsed
lattice animals. In addition we present Monte Carlo evidence that the heat capacity associated
with this model remains bounded in the thermodynamic limit. In fact we do not find any
evidence for a second-order phase transition for collapsed lattice animals.

1. Introduction

Understanding the statistical properties of lattice animals is important to the study of models
of branched polymers and random-cluster models. Recently, information about the statistics
of lattice animals has been used to make predictions about the collapse transition in branched
polymers. In particular, Flesiaet al (1992, 1994) have studied a general lattice animal model
of branched polymer molecules in dilute solution which includes both monomer–monomer
and monomer–solvent interactions. Based on the analysis of exact enumeration data they
have predicted a curve of phase transitions corresponding to the ‘collapse’ of lattice animals
from expanded to compact objects. This collapse can be driven by either strengthening the
attraction between monomers or weakening the attraction between the monomer and solvent
molecules. By making a connection with bond percolation, they proved that the collapse
transition exists at least at one point along the predicted curve of phase transitions. In
addition their results indicate that there are peaks in the heat capacity along a curve within
the ‘collapsed’ regime suggesting the possibility of a collapse–collapse phase transition.
If such a phase transition exists, it would be characterized by a transition from compact
objects with few cycles to compact objects with many cycles. The goal of this paper is to
investigate further the statistical properties of lattice animals in the collapsed regime, we
introduce a model of collapsed lattice animals and study it for the square lattice by rigorous
analysis of the limiting free energy of the model and by Monte Carlo simulation. The model
developed here corresponds to the caseβ1 = −∞ (a nearest-neighbour infinite repulsion
between monomer and solvent molecules) in the Flesiaet al two-variable model and to
Q = 0 in the random-cluster model for the hypercubic latticeZd . In particular, there is a
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direct relationship between the partition function of the model and a reliability polynomial
for the underlying lattice. We also show that the limiting free energy of our model is equal
to the exponential growth rate of the generating function for spanning forests on certain
subsets of the square lattice. We begin by defining the model and proving the existence of
its limiting free energy. Next we make the appropriate connections to other models. We
then obtain rigorous bounds on the limiting free energy and finally we discuss the results
of the Monte Carlo simulation.

2. A model of collapsed lattice animals

A lattice animal is defined to be any finite connected subgraph of thed-dimensional
hypercubic latticeZd . Consider a lattice animal withn vertices, cyclomatic indexc, ande
edges. These three quantities are related through Euler’s relation

c = e − n+ 1. (2.1)

If a pair of vertices in the animal are near neighbours on the lattice and are not incident
on a common edge of the animal, we call this pair of vertices acontact. Let the number
of contacts in the animal bek. If an edge of the lattice is not an edge of the animal but is
incident on exactly one vertex in the animal, we call this edge asolvent contactand write
s for the number of solvent contacts associated with the animal. Counting edges gives the
relation

2dn = 2e + 2k + s (2.2)

and using (2.1),

s + 2k + 2c = 2(d − 1)n+ 2. (2.3)

Let an(s, k) be the number (per lattice site) of animals withn vertices,k contacts ands
solvent contacts. In Flesiaet al (1992) the following two-variable partition function was
defined

Zn(β1, β2) =
∑
s,k

an(s, k)e
β1s+β2k (2.4)

and the limit

lim
n→∞ n

−1 logZn(β1, β2) = G(β1, β2) (2.5)

was shown to exist and to be a convex function ofβ1 andβ2 and continuous for finiteβ1

andβ2. These results hold for any hypercubic latticeZd . In the remainder of this paper we
focus on the two-dimensional case, the square lattice.

In the ‘collapsed’ phase asβ1 goes to negative infinity, it is expected that the behaviour
of Zn(β1, β2) will be influenced to the greatest extent by those animals with the minimum
possible number of solvent contacts. Thus in order to study the collapsed region further we
focus our model on those animals with the minimum possible number of solvent contacts
and call these animalscollapsed. Define smin(n) ≡ min{s | an(s, k) > 0} and define the
partition function for collapsed animalsto be

Zn(−∞, β) ≡
∑
k

an(smin(n), k)e
βk. (2.6)

This notation is used for convenience and because of the definition above,Zn(−∞, β2) 6=
limβ1→−∞ Zn(β1, β2) = 0 but instead

Zn(−∞, β2) = lim
β1→−∞

Zn(β1, β2)e
−β1smin(n) > an(smin(n), 0). (2.7)
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The limiting free energyfor this model is then defined to be

G(−∞, β) ≡ lim
n→∞ n

−1 logZn(−∞, β) (2.8)

where the limit can be proved to exist and is finite for finite values ofβ. A sketch of the
proof is given next and the full details are given in the appendix, sections A.1 and A.2. The
existence proof relies first on using properties of lattice animals with minimum perimeter
to show that for 06 r 6 2m,

4m 6 smin(m
2 + r) 6 4m+ 4 (2.9)

and

am2(smin(m
2), k) 6 am2+r (smin(m2 + r), k) 6 24m+o(m)aM2(smin(M

2), k) (2.10)

whereM = m + 1 + b√mc. Note that for any positive integern there exists integers
m = bn1/2c and r, 0 6 r 6 2m, such thatn = m2 + r. Thus settingm = bn1/2c,
r = n−m2, multiplying by eβk and summing overk in equation (2.10) gives that for anyn

Zm2(−∞, β) 6 Zn(−∞, β) 6 24m+o(m)ZM2(−∞, β). (2.11)

The next step of the proof involves using an appropriate concatenation argument to prove
that

lim
m→∞m

−2 logZm2(−∞, β) (2.12)

exists. The appropriate concatenation argument is similar to that used by Whittington and
Guttmann (1990) for self-avoiding walks which cross a square. Equation (2.11), along
with the existence of the limit in equation (2.12), guarantees the existence of the limit in
equation (2.8).

We note that from the definitions in equation (2.4) and (2.6)

eβ1smin(n)Zn(−∞, β2) 6 Zn(β1, β2). (2.13)

Taking logarithms, dividing byn, letting n go to infinity in equation (2.13) and using the
fact that limn→∞(smin(n)/n) = 0 (see equation (2.9)) gives

G(−∞, β2) 6 G(β1, β2) (2.14)

for all β1 andβ2. We lack an appropriate upper bound to prove that

lim
β1→−∞

G(β1, β2) = G(−∞, β2) (2.15)

however, it is expected that equation (2.15) is true.

3. Relationships with other models

In this section we establish relationships between the limiting free energy for collapsed lattice
animals and functions associated with some other combinatorial problems on the square
lattice. Establishing these connections allows us to obtain useful bounds onG(−∞, β) in
the next section.

Consider them×m grid graph,S(m), to be the subgraph of the square lattice induced
by the vertices{(i, j) | 0 6 i 6 m − 1, 0 6 j 6 m − 1} ⊂ Z2. Note thatS(m) is the
only (up to translation) collapsed animal with no contacts and withn = m2 vertices (see
the appendix, section A.1 for a justification of this). We next show that there is a direct
connection betweenZm2(−∞, β) and the reliability polynomial forS(m).
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The reliability polynomial for ann vertex graphG (see Colbourn 1987, Welsh 1993b),
R(G;p), is defined as

R(G;p) =
∑
B

pe(B)(1 − p)e(G)−e(B) (3.1)

where the sum is over all spanning connected subgraphsB of G ande(B) is the number of
edges inB. If one considers deleting each edge fromG with probability 1− p or keeping
it with probability p as in a bond percolation process, thenR(G;p) is the probability that
the resulting graph is connected. A standard way, known as theF -form (Colbourn 1987),
to expressR(G;p) is

R(G;p) =
b∑
i=0

Fip
b−i (1 − p)i (3.2)

whereb = e(G) andFi is the number of spanning connected subgraphs ofG composed of
b−i edges. For planar graphs, algorithms for calculatingFi are known (Liu and Chow 1983,
Rameshet al 1987, Myrvold 1992); however, there are no known polynomial algorithms
for calculatingR(G;p).

ConsiderG = S(m). In this casee(S(m)) = 2m2 − 2m. If we defineBm,k to be the
set of spanning connected subgraphs ofS(m) with exactly 2m2 − 2m− k edges and define
Bm = ∪k>0Bm,k, then the sum in equation (3.1) is over all elements ofBm andFk = |Bm,k|
in equation (3.2). Hence we obtain

Rm(p) ≡ R(S(m);p) =
∑
k>0

∑
B∈Bm,k

p2m2−2m−k(1 − p)k

= p2m2−2m
m2−2m+1∑
k=0

|Bm,k|
(

1 − p

p

)k
. (3.3)

However,|Bm,k| = am2(4m, k) and hence

Rm(p) ≡ R(S(m);p) = p2m2−2m
m2−2m+1∑
k=0

am2(4m, k)

(
1 − p

p

)k
= p2m2−2mZm2

(
−∞, log

(
1 − p

p

))
. (3.4)

If we definep = 1/1 + eβ or equivalentlyβ = log(1 − p/p), then the above equation can
be rewritten as

Zm2(−∞, β) = (1 + eβ)2m
2−2mRm

(
1

1 + eβ

)
. (3.5)

Taking logarithms, dividing bym2, and lettingm go to infinity in equation (3.5) gives that

G(−∞, β) = 2 log(1 + eβ)+ lim
m→∞m

−2 logRm

(
1

1 + eβ

)
. (3.6)

SinceG(−∞, β) is finite for −∞ < β < ∞ the limit

R(p) ≡ lim
m→∞m

−2 logRm(p) (3.7)

exists and is finite for 0< p < 1. Equation (3.6) yields

R(p) = G

(
−∞, log

(
1 − p

p

))
+ 2 logp. (3.8)



Statistics of collapsed lattice animals 7071

The reliability polynomialR(G;p) of a graphG is directly related to the Tutte
polynomialT (G; 1, 1/(1 − p)) (see Welsh 1993b and references therein). ForG = S(m)

the two polynomials are related through the following equation:

Rm(p) = pm
2−1(1 − p)m

2−2m+1T (S(m); 1, 1/(1 − p)). (3.9)

This implies that

G(−∞, β) = β + lim
m→∞m

−2 logT (S(m); 1, 1 + e−β). (3.10)

For any planar graphG, T (G; 1, 2) counts the number of spanning forests of the dual ofG

(see Brylawski and Oxley 1992, p 131). Aspanning forestof a graphG is any subgraph
(not necessarily connected) ofG which contains all the vertices ofG and has no cycles.
ThusG(−∞, 0) is the growth constant for the total number of spanning forests of the dual
of S(m) in addition to being the growth constant for the total number of spanning connected
subgraphs ofS(m). In our case, because of the self-dual nature of the square lattice, it is
possible to find a relationship betweenRm(p), Zm2(−∞, β) and the generating function
for the k edge spanning forests ofS(m). Given the graphS(m), its dual graphS∗(m) is
obtained by placing a vertex in the middle of each square ofS(m) and placing a vertex
vo outsideS(m). Two vertices inS∗(m) are then joined by an edge if the corresponding
squares inS(m) share a common edge and each vertex on the boundary ofS∗(m) is joined
by an edge tovo. Thus the vertex set ofS∗(m) equals the vertex set ofS(m− 1) union vo
and the edge set equals the edge set ofS(m− 1) union the edges joining the boundary of
S(m− 1) to vo. Definef ∗

m,k to be the number of spanning forests ofS∗(m) with k edges.
Define the generating function for this sequence of numbers to be

F∗
m(β) =

∑
k

f ∗
m,ke

βk. (3.11)

In addition we definefm,k to be the number of spanning forests ofS(m) with k edges and
the generating function for this sequence as

Fm(β) =
∑
k

fm,ke
βk. (3.12)

We claim that

G(−∞, β) = lim
m→∞m

−2 logF∗
m(β) = lim

m→∞m
−2 logFm(β). (3.13)

The proof of this is given in the appendix, section A.3.
Finally we note thatRm(p) corresponds to the partition function for the caseQ = 0

of the random-cluster model. In particular, given a graphG the random-cluster model (see
Welsh 1993a) forG consists of a random process on the edge set,E(G), of G such that
the probability of choosing the edge setA ⊆ E(G) is given by:

µA(p,Q) = p|A|(1 − p)|E(G)−A|Qk(A)∑
A⊆E(G) p|A|(1 − p)|E(G)−A|Qk(A)

= p|A|(1 − p)|E(G)−A|Qk(A)−1

Z (3.14)

wherek(A) is the number of connected components of the edge setA and where

Z =
∑

A⊆E(G)
p|A|(1 − p)|E(G)−A|Qk(A)−1

is the partition function. IfQ is a positive integer then the random-cluster model is related
to the Q state Pott’s model and in the special caseQ = 1 the random-cluster model
corresponds to bond percolation on the edge setE(G). If one letsQ and p go to zero
at the same rate (for example ifQ = λp) then, as pointed out by Fortuin and Kasteleyan
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(1972) and Seno and Vanderzande (1994), in the limit one obtains the spanning trees of
G. Thus, in this limit withG = S(m), one obtains a special class of the collapsed lattice
animals, the spanning trees ofS(m), for which there are no cycles. On the other hand if
one letsQ go to zero for fixedp then, whenQ = 0, the terms which contribute toZ are
the terms withk(A) = 1, i.e. the set of all spanning connected subgraphs ofG, so that for
Q = 0 we haveZ = R(G;p).

4. Bounds onG(−∞,β)

In this section we use the connections made in the last section and results from the Flesia
et al (1994) study ofG(β1, β2) to obtain bounds onG(−∞, β).

Following the derivation in Flesiaet al (1994) of bounds forG(β1, β2), it is possible
to obtain bounds forG(−∞, β). In particular, the combinatorial inequality of Flesiaet al
(1994) (equation (4.1)) withd = 2 gives(
n+ 1 − k − smin(n)/2

j

)
an(smin(n), k) 6

(
k + j

j

)
an(smin(n), k + j)

6
(

2n− k − smin(n)/2

j

)
an(smin(n), k). (4.1)

Settingk = 0 in equation (4.1), multiplying through by eβj and summing overj gives

(1 + eβ)n+1−smin(n)/2an(smin(n), 0) 6 Zn(−∞, β) 6 (1 + eβ)2n−smin(n)/2an(smin(n), 0). (4.2)

Sinceam2(4m, 0) = 1, takingm = bn1/2c, r = n−m2 andk = 0 in equation (2.10) gives

1 6 an(smin(n), 0) 6 24n1/2+o(n1/2) (4.3)

so that

lim
n→∞ n

−1 logan(smin(n), 0) = 0. (4.4)

Thus taking logarithms, dividing byn and lettingn go to infinity in equation (4.2) gives
the bounds

log(1 + eβ) 6 G(−∞, β) 6 2 log(1 + eβ). (4.5)

Similarly, settingk = n + 1 − j − smin(n)/2 in equation (4.1), multiplying throughout by
eβ[n+1−j−smin(n)/2], summing overj , and then rearranging the order of the inequalities leads
to(

2n

n− 1

)−1

(1 + eβ)n+1an(smin(n), n+ 1 − smin(n)/2) 6 Zn(−∞, β)

6 (1 + eβ)n+1an(smin(n), n+ 1 − smin(n)/2). (4.6)

Lattice animals withn vertices and satisfyings = smin(n), k = n + 1 − smin(n)/2 are the
n vertex lattice animals with the maximum number of contacts. Thus from theorem 4.2 of
Madraset al (1990) and equation (2.10)

lim
n→∞ n

−1 logan(smin(n), n+ 1 − smin(n)/2) = 4C/π (4.7)

whereC is Catalan’s constant. Taking logarithms, dividing byn and lettingn go to infinity
in equation (4.6) gives the bounds

log(1 + eβ)− 2 log 2+ 4C/π 6 G(−∞, β) 6 log(1 + eβ)+ 4C/π. (4.8)
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In addition,

an(smin(n), n+ 1 − smin(n)/2)e
[n+1−smin(n)/2]β 6 Zn(−∞, β) (4.9)

so that

4C
π

+ β 6 G(−∞, β). (4.10)

In summary,

β < − log(e4C/π − 1) log(1 + eβ)

β > − log(e4C/π − 1)
4C
π

+ β

 6 G(−∞, β) (4.11)

6


2 log(1 + eβ) β < log(e4C/π − 1)

log(1 + eβ)+ 4C
π

β > log(e4C/π − 1).
(4.12)

Flesiaet al (1994) found that the connection between bond percolation and the two-
variable model leads to the upper bound

G(β1, β2) < 2 log(1 + eβ2) (4.13)

for β2 > 0 and for all β1 6 β2 − 1
2 log(1 + eβ2) (see equation (4.14) of their paper).

Equation (2.14) then implies that

G(−∞, β) < 2 log(1 + eβ) (4.14)

for β > 0.
Using the connection to the reliability polynomial it is possible to extend the strict

inequality in equation (4.14) to all finite values ofβ. To do this we need to introduce a
few definitions. Acut setC for a connected graphG is a set of edges ofG which when
removed fromG yield a disconnected spanning subgraph ofG, G− C. A cut setC of G
is minimal if adding in any edge ofC to the graphG− C results in a spanning connected
subgraph ofG. Let C = {Ci | i = 1, . . . , s} be a set of pairwise disjoint cut sets ofG then
the following is a standard result from reliability theory (Colbourn 1987)

R(G;p) 6
s∏
i=1

[1 − (1 − p)|Ci |] (4.15)

where the product on the right is the probability, in the bond percolation process onG

described in section 3, that at least one edge in each cut set is not deleted. A useful choice
of C for the caseG = S(m) is a set of minimal cut sets each composed of four edges
and obtained as follows. The set of four edges incident on a vertex of degree 4 inS(m)

is a minimal cut set ofS(m). If one considers any set of degree 4 vertices ofS(m) such
that no two vertices are joined by an edge, then the four-edge minimal cut sets associated
with these vertices are pairwise disjoint. Form even, one can choose(m− 2)2/2 degree 4
vertices ofS(m) so that no two vertices are joined by an edge and hence

Rm(p) 6 (1 − (1 − p)4)(m−2)2/2. (4.16)

Form odd, one can choose((m− 1)2/2)−m+ 2 degree 4 vertices ofS(m) so that no two
vertices are joined by an edge and hence

Rm(p) 6 (1 − (1 − p)4)((m−1)2/2)−m+2. (4.17)



7074 L M Stratychuk and C E Soteros

Taking logarithms, dividing bym2 and lettingm go to infinity in equations (4.16) and (4.17)
implies that

R(p) 6 1
2 log(1 − (1 − p)4) (4.18)

where the term on the right-hand side is strictly less than zero forp < 1. Using this in
equation (3.6) withp = 1/1 + eβ gives

G(−∞, β) 6 2 log(1 + eβ)+ 1

2
log

[
1 −

(
eβ

1 + eβ

)4
]

(4.19)

where the term on the right-hand side is strictly less than 2 log(1 + eβ) for all finite values
of β.

It is also possible to get an improved upper bound onG(−∞, β) for the regionβ > 0
using equation (3.13) and an upper bound onFm(β) in terms of the generating function of
the number ofrooted spanning forests ofS(m). In particular, it is well known (see Stanley
1989) that the generating function for the number of rooted spanning forests withk edges
of a graph can be obtained from the characteristic polynomial for the adjacency matrix
of the graph. In a rooted spanning forest there is a distinguished vertex in each connected
component of the forest. Each spanning forest withk edges inS(m) hasm2−k components
and thus is weighted by a factorx1x2 . . . xm2−k in the generating function for rooted spanning
forests ofS(m), wherexi is the number of vertices in theith connected component of the
forest. Thus clearlyFm(β) cannot be obtained easily from the rooted spanning forest
generating function. However, the rooted spanning forest generating function is an upper
bound forFm(β) and this bound should be sharp for largeβ whenFm(β) is dominated by
one-component spanning trees. In particular, it can be shown (see equation (18) of Kornilov
and Priezzhev (1994) withx = eβ andz = 1) that the limiting free energy,F r (β), of the
rooted spanning forest generating function forS(m) satisfies

F r (β) = β + π−2
∫ π

0

∫ π

0
log(4 + e−β − 2 cosθ1 − 2 cosθ2) dθ1 dθ2. (4.20)

We note that this free energy is analytic and hence there is no phase transition for rooted
spanning forests (see Kornilov and Priezzhev (1994) for a more detailed discussion of the
thermodynamics of this model). Furthermore, as expected,F r (β) approaches(4C/π) + β

asβ goes to infinity. Thus

G(−∞, β) 6 β + π−2
∫ π

0

∫ π

0
log(4 + e−β − 2 cosθ1 − 2 cosθ2) dθ1 dθ2 (4.21)

and this bound becomes sharper asβ goes to infinity.
Finally, we can obtain some new bounds for bothG(β1, β2) and G(−∞, β) by

considering the special case of directed lattice animals. The results presented here are
based on the results of Dhar (1987) on the collapse of directed animals. Adirected animal
on the square lattice is a connected subgraph ofn vertices (including the origin) such that
a vertex with coordinates(i, j) belongs to the animal only if it is the origin or at least one
of its predecessor vertices(i − 1, j) and (i, j − 1) belongs to the animal. Definen1 to be
the number of vertices of the animal with one predecessor in the animal andn2 to be the
number of vertices of the animal with two predecessors in the animal. For each animal we
can also defines to be the number of solvent contacts andk to be the number of contacts
of the animal where the meaning of these quantities is the same as for undirected animals.
Let e be the number of edges in the directed animal (e = N1 in Dhar’s notation). Note
thatn2 is the cyclomatic index of the animal (see equation (5b) of Dhar’s paper) and hence
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n2 = n+1−k−s/2. Also note that for each vertex with two predecessors, either of the two
predecessor edges(the edges between a vertex and its predecessor vertices) can be removed
without disconnecting the animal. For any vertex with only one predecessor, removal of
the predecessor edge automatically creates something that is not a directed animal.

DefineAn,s,k to be the number of directed animals withn vertices,s solvent contacts
andk contacts. The above discussion tells us that starting with a directed animal with no
contacts (i.e.n2 = n− s/2 + 1) we can create an animal withk contacts by removing one
predecessor edge from anyk vertices with two predecessor edges. There are two choices
of an edge for each vertex with two predecessor edges, thus

An,s,k =
(
n2

k

)
2kAn,s,0 =

(
n− s/2 + 1

k

)
2kAn,s,0. (4.22)

Consider pure directed bond percolation on the lattice. Each bond is considered open
with probabilitypB and a vertex is open only if it is connected by an open bond to at least
one of its open predecessors. The probability that the origin is in a connected open cluster
consisting of exactlyn open vertices is then

Prob(|C| = n) =
∑
s,k

An,s,k(pB)
2n−s/2−k(1 − pB)

k+s/2 (4.23)

which can be obtained from equation (4) of Dhar’s paper by takingpS = 1. In this case
only half the solvent contacts are required to be closed. The remaining solvent contacts are
predecessor edges which go from a vertex not in the animal to a vertex in the animal and
such edges, open or closed, cannot be edges in the animal.

Using equation (4.22) in equation (4.23) yields

Pn(pB) ≡ Prob(|C| = n) = p2n
B

∑
s

An,s,0

[
1 − pB

pB

]s/2
×
(n−s/2+1)∑

k=0

(
n− s/2 + 1

k

)
2k

[
1 − pB

pB

]k
. (4.24)

Thus

Pn(pB) = p2n
B

∑
s

An,s,0

[
1 − pB

pB

]s/2 [
2 − pB

pB

]n−s/2+1

(4.25)

and

Pn(pB) = pn−1
B (2 − pB)

n+1
∑
s

An,s,0

[
1 − pB

2 − pB

]s/2
. (4.26)

Define the solvent model partition function for directed site animals (k = 0) by

Dn(β) =
∑
s

An,s,0eβs (4.27)

and its limiting free energy by

D(β) = lim
n→∞ n

−1 logDn(β). (4.28)

Similarly define the two-variable partition function for directed animals by

Zn(β1, β2) =
∑
s,k

An,s,ke
β1s+β2k (4.29)

and its limiting free energy by

G(β1, β2) = lim
n→∞ n

−1 logZn(β1, β2). (4.30)
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Then settingβ = 1
2 log( 1−pB

2−pB ) (i.e. pB = 1−2e2β

1−e2β ) in equation (4.28) forβ < − 1
2 log 2 and

using equation (4.26) we obtain:

D(β) = 2 log(1 − e2β)− log(1 − 2e2β)+ lim
n→∞ n

−1 logPn

(
1 − 2e2β

1 − e2β

)
. (4.31)

In addition, equations (4.22), (4.29) and (4.30) imply

G(β1, β2) = log(1 + 2eβ2)+ D(β1 − 1
2 log(1 + 2eβ2)). (4.32)

From directed percolation it is known that

lim
n→∞ n

−1 logPn(pB) = 0 for pB > pBC ≈ 0.6447

lim
n→∞ n

−1 logPn(pB) < 0 for pB < pBC.
(4.33)

Thus

D(β)


= 2 log(1 − e2β)− log(1 − 2e2β) β 6 1

2
log

(
1 − pBC

2 − pBC

)
≈ −0.6694

< 2 log(1 − e2β)− log(1 − 2e2β) −1

2
log 2> β >

1

2
log

(
1 − pBC

2 − pBC

)
.

(4.34)

Hence forβ1 − 1
2 log(1 + 2eβ2) < − 1

2 log 2,

G(β1, β2)



= 2 log(1 + 2eβ2 − e2β1)− log(1 + 2eβ2 − 2e2β1)

β1 − 1

2
log(1 + 2eβ2) 6 1

2
log

(
1 − pBC

2 − pBC

)
< 2 log(1 + 2eβ2 − e2β1)− log(1 + 2eβ2 − 2e2β1)

β1 − 1

2
log(1 + 2eβ2) >

1

2
log

(
1 − pBC

2 − pBC

) (4.35)

and thusG(β1, β2) is analytic everywhere in the region12 log
(

1−pBC
2−pBC

)
> β1− 1

2 log(1+2eβ2)

and there is a curve of collapse-phase transitions in the(β1, β2) plane given by the equation

1

2
log

(
1 − pBC

2 − pBC

)
= β1 − 1

2 log(1 + 2eβ2). (4.36)

(A similar conclusion was obtained recently and independently by Henkel and Seno (1996)
for the grand canonical two-variable partition function of directed animals.) The full curve
in figure 1 is a graph of the collapse-phase boundary given by equation (4.36). Also note
that, in the region to the left of this phase boundary where the limiting free energy is known
exactly and is analytic, one can calculate the heat capacity defined by

C(β1, β2) ≡ ∂2G(β1, β2)

∂β2
2

. (4.37)

It is found that for a range of fixed values ofβ1, C(β1, β2) can have a local maximum at a
β2 value,β∗

2, such thatβ∗
2 > log[( 1−pBC

2−pBC )e
2β1 − 1] − log 2 (or equivalently the point(β1, β

∗
2)

is to the left of the phase boundary given in equation (4.36)). The broken curve on figure 1
is a graph ofβ∗

2 as a function ofβ1. Therefore, in the directed animal two-variable model
one has a curve of heat capacity maximums which do not correspond to a phase transition.

The above results lead to new bounds onG(β1, β2) andG(−∞, β). Clearly,

An,s,k 6 an(s, k). (4.38)
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Figure 1. A β2 versusβ1 plot of the directed animal collapse transition phase boundary
(equation (4.36)) shown here as a full curve. The broken curve indicates the locations (β∗

2)
of local maxima for fixedβ1 of the functionC(β1, β2); this line does not correspond to a phase
boundary.

Hence forβ1 − 1
2 log(1 + 2eβ2) 6 1

2 log( 1−pBC
2−pBC ) ≈ −0.6694

2 log(1 + 2eβ2 − e2β1)− log(1 + 2eβ2 − 2e2β1) 6 G(β1, β2) (4.39)

and for allβ

log(1 + 2eβ) 6 G(−∞, β). (4.40)

Resummarizing the bounds forG(−∞, β) gives

β < − log(e4C/π − 2) log(1 + 2eβ)

β > − log(e4C/π − 2)
4C
π

+ β

 6 G(−∞, β) (4.41)

G(−∞, β) 6 min

{
2 log(1 + eβ)+ 1

2
log

[
1 −

(
eβ

1 + eβ

)4
]
,F r (β), log(1 + eβ)+ 4C

π

}
(4.42)

where at least for−2 6 β 6 2, F r (β) < log(1 + eβ) + 4C/rπ . In figure 2 we plot the
lower and upper bounds given by equations (4.41) and (4.42) for the range−2 6 β 6 2.

5. Monte Carlo simulation

As indicated by equations (2.10) and (2.11), the behaviour ofG(−∞, β) is determined
by the sequence of collapsed animals withm2 vertices. We thus focus our Monte Carlo
algorithm on such animals and we study the set of spanning connected subgraphs ofS(m),
Bm, directly as opposed to studying the reliability or spanning forest problems. To do this
we have developed a Metropolis-style dynamic Monte Carlo algorithm which generates a
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Figure 2. The bounds in equations (4.41) and (4.42) are plotted versusβ as full curves.

Markov chain on the state spaceBm. For a fixed value ofβ, the generated Markov chain
is such that its unique equilibrium distribution satisfies

µβ(A) = eβk

Zm2(−∞, β)
(5.1)

where for anyA ∈ Bm, µβ(A) is the probability that the chain is in stateA and wherek is
the number of contacts in the spanning connected subgraphA.

The algorithm is as follows. We start at timet = 0 with any spanning connected
subgraphA0 of S(m). Suppose at timet > 0 the state of the Markov chain isXt = A ∈ Bm,k.
Then, an edgee is chosen uniformly at random from the entire set of 2m2 − 2m edges in
S(m). If e is an edge (a contact) of the animalA, we attempt to remove (add) this edge from
(to)A to create a new animalA′. If this move is not accepted thenXt+1 = A. The transition
probabilities for these moves are determined by the Boltzmann weights associated withA

andA′ and whether or not the graph resulting from the move is connected. In particular, if
e is a contact of the animalA then we can always add this edge toA without affecting the
connectedness of the animal and create an animalA′ ∈ Bm,k−1; in this case we accept the
move with probability min{1, e−β} and thus

Prob(Xt+1 = A′|Xt = A) = 1

2m2 − 2m
min{1, e−β}. (5.2)

If e is an edge of the animalA then we determine if removal ofe will disconnect the animal.
If removal of e disconnects the animal then we do not make any move andXt+1 = A. On
the other hand if removal ofe leaves the animal connected then we can removee and create
an animalA′ ∈ Bm,k+1; in this case we accept the move with probability min{1, eβ}, so that

Prob(Xt+1 = A′|Xt = A) = 1

2m2 − 2m
min{1, eβ}. (5.3)

Of course the efficiency of this algorithm is limited by the efficiency of the connectedness
check step. However, we take advantage of the fact that at most one edge changes in the
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graph at each step and are able to minimize the loss of efficiency due to the connectedness
check (see Paulhus 1994). Note that the Markov chain{Xt } satisfies the detailed balance
condition

Prob(Xt+1 = A′|Xt = A)µβ(A) = Prob(Xt+1 = A|Xt = A′)µβ(A′) (5.4)

and thus the chain{Xt } is reversible. The chain is also irreducible because it is always
possible to get from one spanning connected subgraphA′ of S(m) to another spanning
connected subgraphA′′ of S(m) by a sequence of edge additions and edge deletions. For
example, first add toA′ all the edges corresponding to contacts inA′ to obtainS(m) and
then delete the edges inS(m) corresponding to the contacts inA′′. Finally, because the
chain is irreducible and because of the rejection techniques used in the algorithm (which
ensure there exists a stateA such that Prob(Xt+1 = A|Xt = A) > 0), the chain is aperiodic.
These properties (equation (5.4), irreducibility, and aperiodicity) guarantee that the Markov
chain{Xt } is ergodic and has the unique equilibrium distribution given by equation (5.1).

Due to limitations in storage space we chose the method of block averages (see Law
and Kelton 1982) for collecting data and estimating the autocorrelation timeτint (see Sokal
1989). We assumed that sampling the Markov chain after an initial equilibration time of at
least 10τint would be sampling from the distributionµβ . We also assumed that for time steps
greater than 10τint estimates of an average quantity from two distinct blocks each of length
at least 2τint would be essentially independent estimates. For a total number of vertices
n = m2, we observed thatτint grows faster than linearly but less than quadratically withn.
Using estimates ofτint and the above assumptions, we obtained 40 essentially independent
observations of each variable for eachn value. For example, forn = 9, 40 blocks each of
size 5× 104 were used, while forn = 196, 40 blocks each of size 3.5 × 106 were used.

In order to investigate the possible singular behaviour ofG(−∞, β), we define the heat
capacity

Cn(β) ≡ n−1 d2 logZn(−∞, β)

dβ2
= var(k)

n
(5.5)

where the variance ofk is calculated over the probability distributionµβ defined in
equation (5.1). We can therefore estimateCn(β) using the Monte Carlo algorithm described
above. Estimates ofCm2(β) for m = 2, 3, 4 from our Monte Carlo simulation compare well
with exact values which can be obtained from the exact enumeration data reported in Madras
et al (1990). In figure 3 we show our estimates ofCm2(β) for m = 8, 10, 12, 14, 20, 30, 40
and for a range ofβ values. The error bars at eachβ give a 95% confidence interval for
the average over 40 values ofCn(β). For a given value ofm, the graph ofCm2(β) versus
β attains a maximum value on the intervalβ ∈ (−1.5, 0). As m increases the maximum
values,hm2, are increasing withm but at a rate which is decreasing asm gets larger. The
location of the maximum,̂βm2, becomes less negative asm increases. In order to quantify
this behaviour, we have estimatedhm2, the peak height, and̂βm2, the peak location, for
m = 3, . . . ,15, 20, 30, 40, 50, 60 by fitting a polynomial to the estimated values ofCm2(β).
We next obtained, by a jack-knife procedure, estimates of the variances of the peak height
and peak location. Figure 4 shows a plot of the estimates ofhm2 versus 1/m. Figure 5
shows a plot of the estimates ofβ̂m2 versus 1/m. In both cases the peak height and peak
location appear to be approaching, approximately linearly with 1/m, a constant asm goes to
infinity. To make this more precise we assume thathn and β̂n satisfy the following scaling
forms asn goes to infinity,

β̂n ∼ β̂∞ − b1n
−ψ1 (5.6)

hn ∼ h∞ − c1n
−ψ2. (5.7)



7080 L M Stratychuk and C E Soteros

Figure 3. The heat capacity,Cm2, versusβ for m = 8, 10, 12, 14, 20, 30, 40. The broke curves
are guides to the eye. The error bars are 95% confidence intervals.

In order to estimatêβ∞ we assume that forn large enough

β̂n = β̂∞ − bn−ψ. (5.8)

For a fixed value ofψ , andn > Nmin we perform a two-parameter weighted linear least
squares fit to findβ̂∞ and b in equation (5.8) and then varyψ in order to minimize the
χ2 statistic of the fit. TakingNmin = 49, we obtain our best estimate atψ = 0.508 and
estimateβ̂∞ to be

− 0.82± 0.005± 0.07. (5.9)

The first error term gives a 95% confidence interval forβ̂∞ based on the weighted linear least
squares fit. The second error term is a systematic error estimated by comparing our estimate
to another estimate obtained by takingNmin = 121. Next, we assume thatβ̂∞ = −0.82 in
equation (5.6) and obtain an estimate forψ1. That is, we perform a two-parameter weighted
linear least squares fit to find logb1 and−ψ1 in the equation

log(β̂∞ − β̂n) = −ψ1 logn+ logb1. (5.10)

From this procedure we obtain our best estimate forψ1 to be

0.50± 0.03± 0.3. (5.11)

We then follow the same procedure to get estimates ofh∞ andψ2. We find our best estimate
whenψ = 0.459 and estimateh∞ to be

0.3553± 0.0006± 0.02 (5.12)

and our best estimate ofψ2 is

0.459± 0.005± 0.2. (5.13)

We followed a similar procedure and attempted to fithn to scaling forms other than that
given in equation (5.7), for examplehn ∼ bnψ andhn ∼ b(logn)ψ ; however, the scaling
form of equation (5.7) yielded the best fit. We therefore conclude that the peak heights are
going to a constanth∞ as estimated above. From looking at the plots ofCn(β) for wide
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Figure 4. The estimated value ofhm2 versus 1/m for m = 3, . . . ,15, 20, 30, 40, 50, 60. The
error bars are estimates of 95% confidence intervals.

Figure 5. The estimated value of̂βm2 versus 1/m for m = 3, . . . ,15, 20, 30, 40, 50, 60. The
error bars are estimates of 95% confidence intervals.

ranges ofβ, it appears that the functionsCn(β) have a bounded continuous limit asn goes
to infinity and that hence the second derivative ofG(−∞, β) exists for allβ. Thus we
find no evidence for a second-order collapse–collapse phase transition. This does not rule
out the possibility of a higher-order phase transition or even a first-order phase transition.
We investigated higher-order derivatives ofZn(−∞, β); however, the fluctuations in the
data were too large to draw any conclusions about even the third or fourth derivatives.
Furthermore, from the results obtained forψ2, we cannot rule out the possibility that the
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correct scaling form forhn is

hn ∼ c0 + c1√
n

+ c2

n
+ · · · (5.14)

which would be the scaling form forhn if there was no collapse–collapse phase transition
and where the 1/

√
n term is a finite size surface correction term (Barber 1983).

6. Discussion

In summary, we have introduced a model for studying collapsed lattice animals and proved
that the limiting free energy exists for this model. We are also able to establish that the
partition function for collapsed lattice animals is directly related to the reliability polynomial
for them×m grid graph and the limiting free energy is related to the generating function
for spanning forests of them×m grid graph. In addition we obtain rigorous bounds for the
free energy of collapsed lattice animals and a new lower bound for the free energy of the
two-variable lattice animal model. Although we do not rigorously establish the existence
or non-existence of a collapse–collapse transition, our results provide strong evidence for
the fact that if a collapse–collapse phase transition exists for this model then it is not a
second-order phase transition.

The results for directed animals indicate that a curve of heat capacity peaks occurs
without any corresponding phase transition. The same may be the case for general lattice
animals and hence there may be no collapse–collapse transition for the general two-variable
lattice animal model. However, one important feature for the lattice animal problem which
is missing from the directed animal problem is the following. There is evidence that there
are two universality classes for the collapse of lattice animals (Flesiaet al 1992, Seno and
Vanderzande 1994) and that the line of heat capacity peaks in the collapsed region (for
increasing values ofβ1) intersects the line of collapse transition points at the dividing point
for the two universality classes (thought to be the point corresponding to bond percolation).
Hence the heat capacity peaks in the collapsed region may be of interest even if there is
no collapse–collapse transition. From our Monte Carlo results we are able to estimate the
peak location and height forβ1 = −∞. We also point out that even if one proves that there
is no collapse–collapse transition atβ1 = −∞ this does not necessarily imply that there is
no collapse–collapse transition forβ1 > −∞ and in particular it is still an open problem to
show that

lim
β1→−∞

G(β1, β2) = G(−∞, β2). (6.1)

Acknowledgments

Both authors wish to acknowledge helpful conversations with M Paulhus and M Bickis. CES
wishes to acknowledge helpful conversations with M Bousquet-Mélou, R Brak, E Janse van
Rensburg, N Madras, A Owczarek, and S Whittington. Part of this paper was completed
while CES was on sabbatical thus CES would like to thank R Brak and the Department of
Mathematics, University of Melbourne, S Whittington and the Chemical Physics Theory
Group, University of Toronto, and the Institute for Mathematics and its Applications,
University of Minnesota, for their hospitality and support. LMS would like to acknowledge
financial assistance from the Challenge ’93, ’94 and Best Matches ’94 programmes. This
research was funded by NSERC of Canada.



Statistics of collapsed lattice animals 7083

Appendix

A.1. Proof of equations (2.8) and (2.9)

We consider first the set of animals withn vertices,smin(n) solvent contacts andk = 0
contacts and call these thecollapsed site animals. Due to the minimum solvent contact
requirement such animals will have no holes in their interior and their boundary will form
a convex polygon. (Aconvex polygonis a self-avoiding polygon with the property that any
line on the dual lattice intersects the polygon in either zero or two edges of the polygon
(see Enting and Guttman 1990).) Furthermore, given a collapsed site animal we can create
its dual animal by placing a square cell around each vertex of the original animal. The
dual animal then has exactlysmin(n) edges in its polygonal boundary andn interior cells
(i.e. arean). Hencean(smin(n), 0) = pn,smin(n) wherepn,m is the number of self-avoiding
polygons on the square lattice withm edges enclosing an area ofn unit cells (see Enting
and Guttmann 1990). For fixed arean, the polygons with the least number of edges (i.e.
smallest perimeter) are convex soan(smin(n), 0) = p̂n,smin(n) where p̂n,m is the number of
convex polygons withm edges enclosing an area ofn unit cells. Next note thatsmin(n) has
two possible forms, eithersmin(n) = 4m for somem or smin(n) = 4m+ 2 for somem. In
particular, if we sets = 4m and ask for site animals with the largest number of vertices,
then an appropriate isoperimetric inequality guarantees that there is exactly one such lattice
animal which forms a square withm2 vertices. That isam2(4m, 0) = 1. Similarly, if we set
s = 4m+ 2 and ask for site animals with the largest possible number of vertices then there
are two such animals both of which arem bym+1 rectangles so thatam(m+1)(4m+2, 0) = 2.
Since for any positive integern there exists integersm = bn1/2c and r, 0 6 r 6 2m, such
that n = m2 + r, thensmin(n) satisfies

4bn1/2c = 4m 6 smin(n) 6 4m+ 4 = 4bn1/2c + 4 (A.1)

and furthermore for 0< r 6 m, smin(n) = 4m+2 and form < r 6 2m+1, smin(n) = 4m+4.
We can obtain a lower bound onan(smin(n), 0) by noting first that if one adds a single

edge to the outside of then = m2 square site animal one increases the number of vertices
by one and the number of solvent contacts by two. If one adds two parallel edges onto
neighbouring solvent contacts on one face of the square animal then one increases the
number of vertices by two and the number of solvent contacts by two. Similarly, if one
replacesr neighbouring solvents on one side of the square animal by edges (16 r < m)
then one increases the number of vertices byr and the number of solvent contacts by two.
In this process we replace any contacts that are created by edges so that the resulting animal
is a site animal. Thus for 16 r 6 m,

m− r + 1 6 am2+r (4m+ 2, 0) = am2+r (smin(m2 + r), 0). (A.2)

The same argument indicates that each animal withm2 vertices, 4m solvent contacts andk
contacts is contained in at least one animal withm2 + r vertices, 4m + 2 solvent contacts
andk contacts. Thus for 16 r 6 m

(m− r + 1)am2(4m, k) 6 am2+r (4m+ 2, k) = am2+r (smin(m2 + r), k). (A.3)

A similar argument involving adding edges to a long side of anm bym+1 rectangle yields
the lower bound

(m− r + 2)am2+m(4m+ 2, k) 6 am2+m+r (4m+ 4, k) = am2+m+r (smin(m2 +m+ r), k)

(A.4)
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where 16 r 6 m+ 1. We note also that for 16 r 6 m

am2+r (4m+ 2, 0) = p̂m2+r,4m+2 6 p̂4m+2 6 24m+2+o(m) (A.5)

and for 16 r 6 m+ 1

am2+m+r (4m+ 4, 0) = p̂m2+m+r,4m+4 6 p̂4m+4 6 24m+4+o(m) (A.6)

wherep̂m is the total number of convex polygons withm edges. The last inequality comes
from the fact that limn→∞(2n)−1 log p̂2n = 2 (Delest and Viennot 1984).

We next show that each collapsed site animal is a subgraph of a square site animal. For
a collapsed site animal withn = m2 + r, 1 6 r 6 m, vertices ands = 4m + 2 solvent
contacts, its dual animal (with a convex polygon as its boundary) is bounded by a rectangle
with perimeter 4m+ 2 (see for example Bousquet-Mélou and F́edou 1995) and areaa such
thatm2 + r 6 a 6 m2 +m (sincem2 +m is the maximum area bounded by a polygon with
4m+ 2 edges). All such bounding rectangles have dimensionsm− l by m+ 1+ l for some
l > 0 such that(m− l)(m+ 1+ l) > m2 + 1 and hencel 6 b

√
m− 3

4 − 1
2c. Similarly, for a

collapsed site animal withn = m2 +m+ r, 1 6 r 6 m+1, vertices ands = 4m+4 solvent
contacts, its dual animal is bounded by a rectangle with perimeter 4m+ 4 and areaa such
thatm2 + m + r 6 a 6 (m + 1)2. Such bounding rectangles have dimensionsm + 1 − l

by m+ 1 + l for somel > 0 such that(m+ 1)2 − l2 > m2 +m+ 1 and hencel 6 b√mc.
Therefore in either case discussed above the length of the longest side of the bounding
rectangle is at mostm+ 1 + bm1/2c.

To determine what the above discussion about the dual animal implies for the original
collapsed site animal we note the following. Consider a rectangular site animal withn

vertices ands solvent contacts. Its dual animal is a rectangle with perimeters and arean. If
there arem1 vertices on a side of the original rectangular site animal then the corresponding
side of the dual rectangle hasm1 edges. Hence the discussion in the previous paragraph
implies that a collapsed site animal withn = m2+r, 1 6 r 6 2m+1, vertices is a subgraph
of a rectangular site animal with its longest side having at mostm+1+bm1/2c vertices and
thus it is a subgraph of a square site animal with(m + 1 + bm1/2c)2 vertices. This gives
the following bound

am2+r (smin(m2 + r), k) 6 [aM2(4M, k)][am2+r (smin(m2 + r), 0)] (A.7)

for 1 6 r 6 2m andM = m+ 1 + bm1/2c. Equations (A.3)–(A.7) give that

am2(4m, k) 6 am2+r (smin(m2 + r), k) 6 aM2(4M, k)p̂4m+4 6 aM2(4M, k)24m+o(m) (A.8)

and this gives equation (2.10).

A.2. Proof of the existence of the limit in equation (2.11)

Using arguments similar to those used in Whittington and Guttmann (1990) for self-avoiding
walks which cross a square, we next show that the limit

lim
m2→∞

m−2 logZm2(−∞, β) (A.9)

exists. Consider anM × M square grid ofM rows ofM vertices,S(M), we can create
an animal which spans this grid by covering it with animals which span a smallerm × m

square,S(m). Note thatS(m) has 2m2 − 2m edges andm2 vertices. DefineBm,k to be
the set of spanning connected subgraphs ofS(m) with exactly 2m2 − 2m − k edges or,
equivalently, the set of lattice animals withn = m2 vertices,s = smin(n) = 4m solvent
contacts andk contacts. Thus|Bm,k| = am2(4m, k). DefineBm ≡ ∪k>0Bm,k. Fix anym.
Now for any integerM > 0 there exists integersp > 0 andq > 0 such thatM = pm+ q
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where 06 q < m. Fix suchp and q. Let Bk1, . . . , Bkp2 be a set ofp2 animals inBm
with k1, . . . , kp2 contacts respectively. We can create an animal which spans theM ×M

square grid by first building up apm× pm square using thep2 animalsBk1, . . . , Bkp2 . In
the resultingpm × pm square, we join each pair of neighbouring vertices which belong

to different animals by an edge and thus obtain an animal inBpm with
∑p2

i=1 ki contacts.
Finally, put the bottom left corner of this animal in the corresponding corner of anM ×M

square grid and add to the animal all the edges of theM×M grid that are not already either

edges or contacts of the animal. We thus obtain an animal inBM with
∑p2

i=1 ki contacts.
This concatenation argument implies the following∑

{ki ,i=1,...,p2|∑p2

i=1 ki=k}

p2∏
i=1

am2(4m, ki) 6 aM2(4M, k). (A.10)

Multiplying both sides by eβk and then summing overk in (A.10) yields

[Zm2(−∞, β)]p
2 6 ZM2(−∞, β). (A.11)

The number of connected spanning subgraphs ofS(M) is certainly less than the total number
of spanning subgraphs ofS(M) so that

aM2(4M, k) 6
(

2M2 − 2M

k

)
(A.12)

and thus

ZM2(−∞, β) 6 (1 + eβ)2M
2−2M. (A.13)

Equation (A.13) implies that

[ZM2(−∞, β)]1/M2 6 (1 + eβ)2. (A.14)

Whittington and Guttmann (1990) (see also Madras 1995) proved that the limit
limL→∞ L−2 logWL2 exists and is finite for a sequence(WL2)∞L=1 if for any m, p and
q < m

[Wm2]p
2 6 WM2 (A.15)

whereM = pm+ q, and if there exists a finite numberB > 0 such that for allL

[WL2]1/L2 6 B. (A.16)

Thus from equations (A.11) and (A.14), we can conclude that, for fixed finiteβ, the limit in
equation (2.12) exists and is finite. This combined with equation (2.11) proves the existence
of the limiting free energyG(−∞, β).

A.3. Proof of equation (3.13)

In this section we prove equation (3.13). We begin by showing that

Zm2(−∞, β) = F∗
m(β) (A.17)

and hence obtain the first equality in equation (3.13). To show this we define a bijection
between the setBm,k of spanning connected subgraphs ofS(m) with k contacts and the
set F ∗

m,k of spanning forests ofS∗(m) with k edges. We note that the definition of the
dual provides a bijection between the edges ofS(m) and the edges ofS∗(m). Under this
bijection an edge inS∗(m) corresponds to the edge it crosses inS(m). Given a spanning
subgraphA of S(m) with k contacts we can construct a spanning subgraphA∗ of S∗(m)
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which consists of all the vertices inS∗(m) and only the edges inS∗(m) corresponding to
thek contact edges ofA in S(m). We note that a subgraphA of S(m) is disconnected if and
only if there exists a set of vertices ofA whose ‘boundary’ (here this means edges inS(m)
but not inA which are incident on exactly one vertex ofA) in S(m) consists entirely of
contacts. Furthermore there exists a set of vertices ofA whose boundary inS(m) consists
entirely of contacts if and only ifA∗ contains a cycle. ThusA is a spanning connected
subgraph ofS(m) if and only if A∗ is a spanning forest ofS∗(m). Thusam2(4m, k) = f ∗

m,k

and equation (A.17) follows.
To show that the next equality in equation (3.13) holds, letTm−1,k be a spanning forest

of S(m− 1) with k edges. Because the vertex setV (S∗(m)) = V (S(m− 1))∪ {vo}, Tm−1,k

plus the vertexvo forms a spanning forest ofS∗(m) with k edges. Thus

fm−1,k 6 f ∗
m,k. (A.18)

Next let T ∗
m,k be a spanning forest ofS∗(m) and suppose the degree ofvo in this forest is

j , 0 6 j 6 4m− 4. Then removing thej edges adjacent tovo yields a spanning forest of
S(m − 1) with k − j edges. The resulting spanning forest ofS(m − 1) could have been
obtained from at most

(4m−4
j

)
different spanning forests ofS∗(m). Thus

f ∗
m,k 6

min{k,4m−4}∑
j=0

(
4m− 4

j

)
fm−1,k−j . (A.19)

Using equations (A.18) and (A.19) we obtain∑
k

fm−1,ke
βk 6

∑
k

f ∗
m,ke

βk 6 (1 + eβ)4m−4
∑
k

fm−1,ke
βk. (A.20)

Taking logarithms, dividing bym2 and lettingm go to infinity in equation (A.20) gives
equation (3.13).
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